Robotic Motion Planning
Applied to Word Ladder Problems

by

Brent M. Dingle
Spring 2002

Abstract:

This paper discusses a simple way of formulating a word puzzle in terms that can be
solved using a Motion Planner. The purpose is to illustrate the potential use of already
existing planning techniques towards new sets of problems by creatively and correctly
restating problems in terms that apply. The intent is to demonstrate to beginning
Computer Scientists a method of approaching problems by applying already known
solutions, rather than reinventing solutions. This paper does not claim to be solving this
problem in any “better”” way, just a different way. The intended audience is introductory
level Computer Science students already familiar with motion planning techniques.

INTRODUCTION
We have all seen word ladder problems. For example if the puzzle was: transform FOOL
to WISE altering one letter at each step with a restriction that at each step you must be at
a valid word you might use the sequence:

FOOL

POOL

POLL

PILL

WILL

WILE

WISE

Most of the time the problems also limit the number of steps you are to use. In case you
wish to brush up on your skills attempt the following. In 5 steps transform BUSH to
GORE, altering only one letter at each step with the restriction that each step must be a
valid word.

So how does this relate to Motion Planning?

THE PROBLEM

In Motion Planning there is always a configuration space and the goal is to move from a
start configuration to an end configuration, usually in some “shortest distance.” This
should seem very similar to the above, but what would our configuration space be?

Well, if we remove the “each step must be a word” condition we quickly discover any
problem can be solved in n steps, where n would be the length of the two words. So we
might approach the problem from that angle and allow the configuration space to be all
permutations of n letters. However that makes the problem trivial. So we need to keep the
“each step must be a word” condition.

This should immediately cause one to notice that not all puzzles can be solved in n steps.
This leads to the conclusion that our actual configuration space is all n-letter words.
Notice this does not make the solutions trivial as we must also meet the restriction of only
changing one letter from step to step. Thus we discover a distance measurement idea,
which may also lead to an idea of obstacles.

So let us consider two words, W1 and W2, both of length n, where W1[i] denotes the it
letter of W1. Let us define the distance between the two words as the sum of the letters

such that W1[i] # W2[i] for all i = 1 to n. Thus the distance between the words PILL and
POLL is one, whereas the distance from PILL to WISE is three. Notice this should be
understood to be the minimum distance. The actual distance may be much larger, for the
actual distance will be defined as the (minimum) number of steps to actually transform a
word into another word under the constraints given above.

With these definitions of distance we see we could solve any problem by making a table
of O(n?) values based on a dictionary of n-length words. And given any word simply
chart all paths from the word following trails of words such that from the table the
distance from any two words along a path is exactly one.

If our dictionary of words is small then the above is a small problem and we will likely
not be able to solve many problems as we will not have enough words to do so. However,
if our dictionary is large then we are faced with a more difficult problem.

SETUP FOR A PRM

To summarize, for word ladder problems, we define our configuration space, C, to be all
permutations of n letters. Then, our free configuration space, Cee, is all words in our
dictionary of length n. Our obstacle configuration space, Cops, is all n letter permutations
not in our dictionary. Our movement constraint is that we can only move from one word
to another if the distance between them is one (i.e. the words are only different in exactly
one letter).

We will now present a way to solve these word ladder problems using a motion planning
technique referred to as the Probabilistic Roadmap Method (PRM). It should be noted
that this problem can be solved in other ways and using different motion planning
methods. However, our goal is not to prove that this is the best method nor the only
solution. We mean only to show that PRMs can be used to solve such a problem. We
want to emphasize the issue of redefining the problem in such a way as to be able to
apply this method. We believe this type of problem solving technique is crucial to
advancing Computer Science.

In this method we construct a representation of Cge. using an undirected graph G(V, E),
where V is a set of vertices and E is a set of edges. Each vertex in V is a member of Cge,.
In our case each member of V' is a word in our dictionary of length n. Each edge in E'is a
collision free path from a pair of vertices in V. Notice also that each of our edges will
only connect vertices which are exactly a distance of one apart from one another.

In most PRM methods the graph G is preconstructed before any queries are run (i.e. we
construct G before trying to solve any puzzle). Once G is constructed we should be able
to use it to solve any puzzle (corresponding to the word length = n).

The general algorithm for a Probabilistic Roadmap Method is as follows [Lavalle]:

1 G.initialize();

2 fori=1toM

3 q € RandFreeConfig(q);

4 G.addVertex(q);

5 for each v € NhbrHd(¢,G)

6 if ((not G.sameComponent(g,v)) and Connect(q,v)) then
7 G.addEdge(q,v);

8 Return G;

The returned graph will have M vertices. The functions of the above algorithm are
described below. It might be noted that the condition (not G.sameComponent(g,v)) is
sometimes replaced with the condition (G.vertexDegree(q) < K), for some fixed K.

The RandFreeConfig() function is used to find a random configuration in Cgee. In our
case this is trivial as all we need to do is select a random word (of length n) from our
dictionary. For illustrative purposes the general construct of the algorithm is:

1 repeat

2 q € GetRandConfig();
3 until g € Cpee;

4 Return q;

The NhbrHd() function returns an ordered list of vertices in G(V, E). Each of these
vertices (words) are within a distance € of g. Where €, and the distance metric p(g, v) are
predetermined. In our case p(q, v) is the number of letters the word corresponding to
vertex ¢ is different from the word corresponding to v. And if we set € equal to one, the
Connect(q, v) becomes automatic.

The G.sameComponent() condition will determine if g and v are in the same connected
component of G. If they are in the same component then we usually do not try to connect
them as there is already a path from one to the other. However, if we are seeking shortest
paths it may be required. (In what follows, we will not be seeking shortest paths).

The general algorithm for determining if ¢ and v are in the same connected component is
defined below. It is assumed that Q is a priority queue with its elements in increasing
order of distance from vertex q.

1 Q.init();

2 foreachve V

3 if p(q, v) < € then
4 Q.insert(v);

5 Return q;

The Connect(g,v) function is sometimes referred to as a local planner. Basically this
function attempts to connect g and v using a very simple and quick algorithm. If it is
unable to connect them it returns false. If it succeeds in connecting them it returns true.
Notice this does not necessarily mean that ¢ and v are adjacent in the graph. It just means
there is a path from one to the other. According to the general algorithm this means we
must place an edge between g and v. For our purposes however it will be better to add the
connecting path to G. As an aside, notice another option might be to weight the edges and
any weight greater than one would require a call to the local planner in the query phase.

So our Connect function will take several parameters including ¢, v, G. It will return true
if it found a path (a mini-ladder) from ¢ to v and it will insert the appropriate connections
and vertices into G. If no such path is found it will return false. We may want to further
limit it to not trying to go more than a certain distance (n/2 + I). If it goes farther than
that it will be solving a problem harder than our general problem. This may lead to some
solutions being missed and may require tweaking. Finding good local planners is often
not easy.

CREATING THE MAIN MAP

So to set up our main map we would use the following pseudocode:
PROCEDURE PRM:
INPUT:
Graph Pointer (the map),
Input Dictionary filename,
The desired number of vertices to be placed in the map,
The maximum degree of each vertex
OUTPUT :
Graph Pointer will be the main PRM map

Initialize Graph to have zero vertices/nodes;
while (i <= num_verts)
{

node = GetRandomNode(...); // from input dictionary file

graph->AddNode (node) ;

increment i by one;

CheckNhbrs(...) // For each node v (valid word), whose distance
is one from node add edge from v to node - also add v into
graph if not already in graph and increment i1 so our vertex
count 1is correct.

}
} // end PRM

The procedure CheckNhbrs is a slight variation from the standard concept of PRM
methods. What it basically does is “bush out” our randomly selected nodes. For example
if our randomly selected node was cool, then CheckNhbrs would likely add pool, fool,
tool and wool to our PRM main map. Below is the pseudocode for it:

PROCEDURE CheckNhbrs
INPUT:
Dictionary Input File
Word length
Graph pointer (the map being created)
Node Pointer
Maximum/Desired Number of Vertices to be placed in the map
OUTPUT :
Any words one distant from the node’s word will be added to
Graph

// loop through each character of node’s word
for (let_index = 0; let_index < num_lets; let_index++)

{
Change the letter to a, b, ¢, ... z
If this creates a word found in the dictionary add it to Graph
and check if it is also a nhbr of anything else already in Graph

}

} // end CheckNhbrs

So the above pseudocode would establish our PRM map. From this map we should be
able to create a word ladder from any given word to any other given word (assuming our
input dictionary allows it). Notice this is only a should be able to statement. If we put all
the words in our dictionary into the initial map it would become a guaranteed statement.
However, one objective of PRM methods is not to require all free configuration states to
be included in the main map, hence it remains a should be able to statement.

LOCAL PLANNING

Since not all of our words (not all of our free configuration states) are included in the
main PRM map it is likely we might choose an initial word not in it. When this occurs we
must use a local planning method to create a path from our chosen word to the PRM map.

The below pseudocode illustrates a trivial local planner which will add the word to our
map. But it will only be connected if it happens to be a distance of one from any of the
words already in the map.

FUNCTION Connect
INPUT:
node addme
OUTPUT:
Graph with node added and connected the pre-existing map.

Add the node to the graph

Cycle through all members already in list
If any are within 1 to dist characters of addme
Then Make them Neighbors

} // end Connect

For example say our PRM main map was something like the following, notice it has only
one connected component:

cool — pool — fool — tool — wool
/ \
foul fowl

Also assume the words bowl and bats are in our dictionary, but not selected to be in our
PRM main map.

Now suppose our initial words were cool and bowl. Nothing would need to be done for
cool, as it already is in the map. However, we would need to insert bowl into the map and
using the above described local planner attempt to connect it to the component(s) of the
already existing map.

So our code would examine each word already in the map. If any word was found to be

only one letter different from bowl, then it and bowl would be connected. Thus our code
would connect bowl to fowl. Therefore if we asked for a word ladder from cool to bowl
our code would likely return: cool, pool, fool, fowl, bowl.

Notice our code does not necessarily return the most optimal word ladder. However this
could be fixed with a bit of optimizing code or better graph construction techniques.

Another quickly realized problem is that our local planner might be too trivial. For
example if our words were cool and bows we would be unable to find a path. Yet if our
local planner connected words a distance of TWO together instead of just one, we would
succeed — since we can go from bows to bowl.

Problems such as these are difficulties to be dealt with constructing good PRMs and local
planners. Regardless using the above local planner with the already described PRM code
we could solve word ladder problems using PRM techniques.

CONCLUSION

So we have now seen that the word ladder problem may be restated in such a way as to
allow for motion planning techniques to be applied to it. While it is not the most efficient
way, nor does it necessarily guarantee a solution, it does work. This would leave room to
investigate why it does not always work and how that might be achieved. For example it
is interesting to play with how many words need to be included in the main PRM map.
When a solution actually existed for four letter words it seemed in our trials that % of our
roughly 6000 word dictionary was sufficient to achieve success. It would also be
interesting to develop optimizing routines to shorten the ladder as much as possible. But
we may also want to go beyond this to applying what we have learned to other problems.

The above is just one way to solve a very specific problem using a motion planning
technique. This may lead us to consider other problems that may also be restated in such
a way as to apply motion planning techniques. In particular we may apply the same
technique described above to other problems involving easily identified ‘valid’ states
where only a finite number of changes can occur between states. For example consider
the transition states of a computer (a program, an operating system, a compiler...) or
database queries. Perhaps these problems will be addressed in future papers.

As a final wrap up, in case the practice problem in the introduction has you frustrated
here is the solution: BUSH, PUSH, POSH, POSE, PORE, GORE. You will also find the
full source code and dictionaries for our experiments on which this paper is based at:
http://people.cs.tamu.edu/dingle/Projects/

http://people.cs.tamu.edu/dingle/Projects/

BIBLIOGRAPHY

Amato1998

Bohlin2000

Branicky2001

Glavine1990

Kavraki1994

Latombe1991

Lavalle

Lavalle1998

N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo. Choosing
good distance metrics and local planners for probabilistic roadmap
methods. Technical Report 98-010, Dept. of Computer Science, Texas A&M
University, May 1998. A preliminary version of this paper appeared in
ICRA’98.

R. Bohlin and L. E. Kavraki. Path planning using lazy PRM. In Proc. IEEE
Int. Conf. Rob. & Autom., pages 521--528, 2000.

M. Branicky, S. Lavalle, K. Olson and L. Yang. Quasirandomized path
planning. IEEE International Conference on Robotics and Automation,
Seoul(Korea), 2001.

B. Glavina. Solving findpath by combination of directed and randomized
search. In Proc. IEEE Internat. Conf. Robot. Autom., pages 1718 — 1723,
1990.

L. Kavraki and J.-C. Latombe. Randomized preprocessing of configuration
space for fast path planning. In Proc. IEEE Int. Conf. Robotics and
Automation, pages 2138--2145, 1994.

J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, MA, 1991.

S. M. LaValle. Course Notes CS 497, htip://msl.cs.uiuc.edu/~lavalle/cs497/,
Spring 2002.

S. M. LaValle. Rapidly-exploring random trees: A new tool for path
planning. TR 98-11, Computer Science Dept., lowa State Univ.
<http://janowiec.cs. iastate.edu/papers/rrt.ps>, Oct. 1998.

http://msl.cs.uiuc.edu/~lavalle/cs497/

APPENDIX A - Full Source Code

Graph.h:

I -
// Graph.h

//

// Written by Brent M. Dingle, Spring 2002

I -

#ifndef BMD_GRAPH_CLASS

e T
f
#define WORD_NOT_SET "WordNotSet"
#define MAX_NHBRS 30
#define MAX_RECURSE_DEPTH 30
[
e
/) T
class CNode
{
public:

CNode () ;

CNode (char *word, long id);

CNode (const CNodeé& rhs); // copy constructor

~CNode () ;

long AddNhbr (CNode *addme) ;

char m_word[25];

long m_id;

CNode *m_nhbr [MAX_NHBRS]; // these will NOT be allocated by this class
long m_num_nhbrs;

private:
i

class CNodeList

{

public:
CNodeList () ;
~CNodeList () ;

void SetNode (CNode tothis);

CNodeList* AddNode (CNode addme) ;

CNodeList* FindNode (CNode *findme) ;

void RemoveNode (CNode delme) ;

long MakeNhbrs (CNode v1, CNode v2);

bool FindPath (CNode *from, CNode *to, CNodeList *the_path,
long recurse_depth = 1, bool check_ends = true);

void OutputList ();
void OutputListWithNhbrs (long how_many) ;

CNode m_node;
CNodeList *mp_next;

private:
CNodeList* AddWithJoin (CNode *addme, long dist=1);
long WordDiff (char *wl, char *w2);

class CGraph

{

public:
CGraph () ;
~CGraph () ;

AddNode (CNode addme) ;
AddEdge (CNode v1, CNode v2); // adds verts also if not already in graph

FindNode (CNode findme) ;

bool FindPath (CNode *from, CNode *to, CNodeList *the_path,
long recurse_depth = 1, bool check_ends = true);

void OutputListWithNhbrs (long how_many) ;

CNodeList m_list; // edges are by nhbrs of node
bi

#define BMD_GRAPH_CLASS
#endif

// Graph.cpp

//

// Written by Brent M. Dingle, Spring 2002

//

I -

#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
#include <iostream.h>
#include <ctype.h>
#include <string.h>

#include "graph.h"

CNode: :CNode ()
{

long i;

strcpy (m_word, WORD_NOT_SET) ;
m_id = -1;

for (i=0; i < MAX_NHBRS; i++)
{

m_nhbr[i] = NULL;
}

m_num_nhbrs = 0;

}

CNode: :CNode (char *word, long id)
{

long 1i;

strcpy (m_word, word);
m_id = id;

for (i=0; i < MAX_NHBRS; i++)
{

m_nhbr[i] = NULL;
}

m_num_nhbrs = 0;

}

CNode: :CNode (const CNodeé& rhs)
{

long 1i;

strcpy (m_word, rhs.m_word);
m_id = rhs.m_id;
for (i=0; i < MAX_NHBRS; i++)
{
m_nhbr[i] = rhs.m_nhbr[i]; // this may cause bad things to happen
}

m_num_nhbrs = rhs.m_num_nhbrs;

}

CNode: : ~CNode ()
{

// do nothing, nhbrs NOT allocated by this class
}

long CNode: :AddNhbr (CNode *addme)
{

long ret_val;
ret_val = 0;

if (m_num_nhbrs < MAX_NHBRS)

{
m_nhbr [m_num_nhbrs] = addme;
m_num_nhbrs++;
ret_val m_num_nhbrs;

}

return ret_val;

CNodeList: :CNodeList ()

{
strcpy (m_node.m_word, WORD_NOT_SET) ;
mp_next = NULL;

}

//
CNodeList: :~CNodeList ()
{

if (mp_next != NULL)
{
delete mp_next;
mp_next = NULL;

void CNodeList::SetNode (CNode tothis)
{

m_node = tothis; // notice this COPIES the tothis
}

CNodeList* CNodeList::AddNode (CNode addme)

{

}

//
//
//
//

CNodeList *ret_ptr;
ret_ptr = NULL;

// don’t allow duplicate
if (strcmp (m_node.m_word,
{

return NULL;
}

if (strcmp (m_node.m_word,
m_node = addme;

ret_ptr = this;
}

node/words
addme .m_word) ==0)

WORD_NOT_SET) == 0) // this is the head node of the list

else
{
if (mp_next != NULL)
{
ret_ptr = mp_next->AddNode (addme) ;
}
else
{
mp_next = new CNodelList;
mp_next—->SetNode (addme) ;
mp_next->mp_next = NULL;
ret_ptr = mp_next;
}
}
return ret_ptr;
// end AddNode
AddWithJoin
dist defaults to 1 (= num chars difference to call words neighbors)

CNodeList* CNodeList::AddWithJoin (CNode *addme, long dist)

{

CNodeList *ret_ptr;
CNodeList *ptr;
long chars_diff;

ret_ptr = AddNode (*addme)

if (ret_ptr != NULL)
{

; // ret_ptr thus pts at mem in LIST

// cycle through all members already in list

// 1f any are within 1
// Make them Neighbors
ptr = this;

while (ptr != NULL)

{

to dist characters of addme

chars_diff = WordDiff (ptr->m_node.m_word, ret_ptr->m_node.m_word);
if ((chars_diff >= 1) && (chars_diff <= dist))

{

MakeNhbrs (ret_ptr->m_node, ptr->m_node);

}

// advance the ptr for looping

ptr = ptr->mp_next;
if (ptr == ret_ptr)
{

ptr = ptr->mp_next; // should become NULL

}
} // end while ptr != NULL
} // end if

return ret_ptr;
} // end AddWithJoin

/] e e
// WordDiff
//

// Return number of character different between wl and w2

long CNodeList::WordDiff (char *wl, char *w2)
{

long 11, 12, max;

long 1i;

long diff;

11 = strlen(wl);

12 strlen(w2);

max = 12; // guess that 11 and 12 are equal or 12 is smaller

diff = 11 - 12;

if (diff < 0) // 11 smaller
{

max = 11;

diff = -diff; // make diff positive
}

for (i=0; i < max; i++)

{ if (wl[i] != w2[i])
{ diff++;

} /} end for

return diff;
} // end WordDiff

//
//
CNodeList* CNodelList::FindNode (CNode *findme)
{

CNodeList *ret_ptr;
ret_ptr = NULL;

if (strcmp (m_node.m_word, findme->m_word) == 0)
{

ret_ptr = this;
}

else
{
if (mp_next != NULL)
{
ret_ptr = mp_next->FindNode (findme) ;
}
else

{
ret_ptr = NULL;
}
}
return ret_ptr;
} // end FindNode

void CNodeList::RemoveNode (CNode delme)

CNodeList *find_ptr, *tmp_ptr;

bool found;
if (strcmp (m_node.m_word, delme.m_word) == 0)
{

if (mp_next == NULL) // list becomes empty

{
strcpy (m_node.m_word, WORD_NOT_SET) ;
}

else // make this (head) node equal the next and delete the next

{

m_node = mp_next->m_node;
tmp_ptr = mp_next;
mp_next tmp_ptr->mp_next;

delete tmp_ptr;
tmp_ptr = NULL;
}
}
else
{
tmp_ptr = this;
find_ptr = mp_next;

found = false;
while ((find_ptr != NULL) && (!'found))
{
if (strcmp (find_ptr->m_node.m_word, delme.m_word) == 0)

{
found = true;
tmp_ptr->mp_next = find _ptr->mp_next;
delete find_ptr;
find_ptr = NULL;

}

else

{
tmp_ptr = find_ptr;
find_ptr = find_ptr->mp_next;

}

} // end while find_ptr != NULL and not found
}

} // end RemoveNode

long CNodeList: :MakeNhbrs (CNode v1, CNode v2)
{

CNodelList *vl_node, *v2_node;

vl_node = FindNode (&vl);
v2_node = FindNode (&v2);

if (vl_node == NULL)
{
vl_node = AddNode (vl);
if (vl_node == NULL)
{
cout << "ERROR in CNodelist::MakeNhbrs, v1" << endl;
return O;

if (v2_node == NULL)
{
v2_node = AddNode (v2);
if (v2_node == NULL)
{
cout << "ERROR in CNodeList::MakeNhbrs, v2" << endl;
return 0;

}

v1_node->m_node.AddNhbr (& (v2_node->m_node)) ;
v2_node->m_node.AddNhbr (& (vl_node->m_node)) ;

return 1;
} // end MakeNhbrs

I -
// recurse depth is how deep into the recursion we currently are
// MAX_RECURSE_DEPTH is how far we are allowed to go

bool CNodelList::FindPath (CNode *from, CNode *to, CNodelList *the_path,
long recurse_depth, bool check_ends)

{
CNodeList *start, *end;
long i;
bool match;

if (recurse_depth > MAX_RECURSE_DEPTH)
{

return false;

if (check_ends)

start = FindNode (from) ;
end = FindNode (to);
if ((start == NULL) || (end == NULL))

{
cout << "Unable to locate from or to node" << endl;
cout << "Attempting to add them and join them to current graph" << endl;

if (start == NULL)
{
start = AddWithJoin (from) ; // AddWithJoin is sort of a local planner
}
if (end == NULL)

{
end = AddWithJoin (to);
}
// debug check
cout << "New graph list with nhbrs is:" << endl;
OutputListWithNhbrs (5) ;

} // end if start or end not found

from = & (start->m_node) ; // this is so the pointers are the nodes
to = & (end->m_node) ; // INSIDE the list guaranteed

// Add the start node to the PATH
the_path->AddNode (start->m_node) ;
// debug check
//cout << "START node added to the path, path is currently:" << endl;
//the_path->OutputList () ;
//cout << " " << endl;

}

// Check that to isn’t an immediate nhbr of from

i = 0;
match = false;
while ((i < from->m_num_nhbrs) && (!match))

{
if (strcmp (from->m_nhbr[i]->m_word, to->m_word) == 0)
{
match = true;
the_path->AddNode (* (from—>m_nhbr([i]));
// debug check
//cout << "Node added to the path, path is currently:" << endl;
//the_path->OutputList () ;

//cout << Memmmmm e " << endl

}
i++;
} // end while

// If "to node" was NOT only 1 away from "from node"
// check all nhbrs (depth first type search) of from node
i = 0;
while ((i < from->m_num_nhbrs) && (!match))
{
// prevent circular travel
if (the_path->FindNode (from->m_nhbr[i]) == NULL)
{
the_path->AddNode (* (from->m_nhbr[i]));
match = FindPath (from->m_nhbr[i], to, the_path,
recurse_depth+l, false);
if (!match)
{
the_path->RemoveNode (* (from—>m_nhbr([i]));
}
else
{
// debug check
//cout << "Node added to the path, path is currently:" << endl;
//the_path->OutputList () ;
//cout << Memmmmm e " << endl
}
} // end if from->nhbr[i] is NOT currently in the_path

it++;
} // end while

return match;
} // end FindPath

void CNodeList::OutputList ()

{
CNodeList *ptr;

if (strcmp (m_node.m_word, WORD_NOT_SET) != 0) // this is the head node of the list
{
cout << m_node.m_word << endl;

}
ptr = mp_next;

while (ptr != NULL)
{
cout << ptr->m_node.m_word << endl;
ptr = ptr->mp_next;
}
} // end OutputList

/] e e e
// OutputListWithNhbrs
//

// Output list showing first how_many neighbors of each node

void CNodeList::OutputListWithNhbrs (long how_many)
{

CNodeList *ptr;

long 1i;

if (strcmp (m_node.m_word, WORD_NOT_SET) != 0) // this is the head node of the list
{
cout << m_node.m_word << endl;

}

ptr = mp_next;

while (ptr != NULL)
{

cout << ptr->m_node.m_word;

// output the nhbrs of current node

i=20;

while ((i < ptr->m_node.m_num_nhbrs) && (i < how_many) && (i < MAX_NHBRS))
{

cout << " - " << ptr->m_node.m_nhbr[i]->m_word;

it++;
} // end while

cout << endl;
ptr = ptr->mp_next;

}
} // end OutputListWithNhbrs

CGraph: :CGraph ()
{
}

CGraph: :~CGraph ()
{
}

CGraph: :AddNode (CNode addme)
{

m_list.AddNode (addme) ;
}

// adds verts also if not already in graph
CGraph: :AddEdge (CNode v1l, CNode v2)
{
m_list.MakeNhbrs (vl, v2);
}

CGraph: :FindNode (CNode findme)
{

bool ret_val;

ret_val = false;
if (m_list.FindNode (&findme) != NULL)
{

ret_val = true;

}

return ret_val;

}

bool CGraph::FindPath (CNode *from, CNode *to, CNodeList *the_path,
long recurse_depth, bool check_ends)
{

bool ret_val;

// may add some simple path planning here, in case
// from and to are not already in the graph
// For example: if not then see if any of the distance =1 nhbrs are

// Or simply add them into the graph and then add all edges to their
// distance 1 nhbrs

ret_val = m_list.FindPath (from, to, the_path, recurse_depth, check_ends);

return ret_val;

I -
// OutputListWithNhbrs
e S
void CGraph::OutputListWithNhbrs (long how_many)
{

m_list.OutputListWithNhbrs (how_many);
}

// PlanPath.cpp

// Written By Brent Dingle

//

// This program will create a graph to be used to solve word ladder
// problems.

// The user must supply a the number of letters in the word

// to create a path for. The corresponding word file will be used to
// create the path. (e.g. 4 letter words will require g_word4.txt

// to be used).

// The user may also specify the desired maximum degree of each
// vertex in the solution graph (the default is 10).

//

// The solution path graph will be output to path[i].txt

// where [i] = number of letters (e.g four letters means output file

// will be named path4.txt)

//

[

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <iostream.h>
#include <ctype.h>
#include <string.h>
#include <math.h>

#include "graph.h"

/] S
// DEFINES

//

// below are needed for the Random Number Function

#define MBIG 1000000000

#define MSEED 161803398

#define MZ 0

#define FAC ((float)l.0 / MBIG)

// Now we get on with more ’'significant’ defines
#define DEFAULT_MAX_DEG 10
#define MAX_LETS 25

// Set MakeGraph for why increasing FRACT_OF_WORDS decreases likelihood of success

// (decreases sample size)
#define FRACT_OF_WORDS 4 // originally 4

// PROTOTYPES

void DisplayHelp (void);

long RandomLong (long max_num, long *seed);
float Ran3(long *idum);
void Num2Str (char *str, long num);

long

void

void

void
void

GetWord (FILE *infile, char *word);

MakeGraph (long num_lets, long max_deg, CGraph *graph);

PRM (CGraph *graph, char *inname, long words_in_file,

long num_lets, long num_verts, long max_deq);

GetRandomNode (FILE *infile, long max_index, CNode *node, CGraph *graph);
CheckNhbrs (FILE *infile, long num_lets,

CGraph *graph, CNode *node, long *num_verts);

FindWord (FILE *infile, char *word);

int main(int argc, char *argv([])

{

//
//

CNodeList path;

CNode

nodel, node2;

CGraph graph;
long num_lets, max_deg;

cout
cout
cout
cout
cout

<<
<<
<<
<<
<<

"Plan Path for word ladder problems." << endl;

"Program written by Brent Dingle, Spring 2002" << endl;

"All rights reserved, no warranty expressed or implied." << endl;
"Use at your own risk." << endl;

endl;

if (argc < 2)

{

DisplayHelp();
exit (0);

}

// Set number of letters in the words to solve for

num_lets

= atol (argv([l]);

if ((num_lets < 4) || (num_lets > MAX_LETS))

{

cout << "Number of letters must be from 4 to " << MAX_LETS << "." << endl;
cout << "Program ends." << endl;
exit (0);

// Set the maximum degree (number of connected neighbors to any vertex)
if (argc > 2)

max_deg = atol (argv[2]);

if
{

}

else

{

((max_deg < 2) || (max_deg > 50))

cout << "Maximum degree must be from 2 to 50." << endl;
cout << "Program ends." << endl;

exit (0);

max_deg = DEFAULT_MAX_DEG;

MakeGraph (num_lets, max_deg, &graph);

cout << "Graph creation complete." << endl << endl;

strcpy (nodel.m_word, "cats");

strcpy (node2.m_word, "hush");
strcpy (nodel.m_word, "wise");
strcpy (node2.m_word, "fool");

// do NOT manually add the start and end nodes into the graph!!!!

// FindPath will do it when needed.

// See if we can find a path from nodel to node2
if (!'graph.FindPath (&nodel, &node2, &path))

cout << "Path from " << nodel.m_word <<

endl;

}

else

{
cout << "Path found:" << endl;
path.OutputlList ();

}

cout << "Program ends." << endl;

cout << "Press any key." << endl;

getch();

return 0;

} // end main

/e

// DisplayHelp

void DisplayHelp ()
{
cout << endl;
cout << "Directions:" << endl;

cout << "\
<max_degree>" << endl;

cout << "planpath [num_letters]
cout << endl;

cout << "[num_letters] = number of letters
cout << " the problem to be
cout << "<max_degree> = optional parameter
cout << " number of nhbrs to
cout << " each vertex."

cout << endl;

" to " << node2.m_word << " not found."

in words of" << endl;

solved." << endl;

to declare the maximum" << endl;
use in the path graph for" << endl;

<< endl;

cout << "Also g_word[nnn].txt files should be in the same directory" << endl;

cout << "as this executable, where nnn

001, 002,

999" << endl;

cout << "as [num_letters] dictates." << endl;

cout << endl;
} // end DisplayHelp

//

// RandomLong
//
// Return an integer from 0 to max_num

//

long RandomLong (long max_num, long *seed)

{
float num;
long ret_val;

num = Ran3 (seed);
num *= max_num;

ret_val = (long)num;

return ret_val;
} // end RandomLong

—-— subtractive method for Uniform random number

// Returns a UNIFORM random deviate between 0.0 and 1.0.
// Set idum to any negative value to initialize or

// reinitialiize the sequence.

<<

et
float Ran3(long *idum)
{

static int inext, inextp;

static long mal[56]; // 56 should NOT be changed

static int iff = 0;

long mj, mk;
int i, 1ii, k;

// Initialization
if ((*idum < 0) || (iff == 0))
{

iff = 1;

// Init ma[55] using seed idum and MSEED
mj = labs (MSEED - labs (*idum));
mj %

= MBIG;
ma[55] = mj;
mk = 1;

// Initialize the rest of the table in slightly random order
// with numbers that are not especially random
for (i = 1; i <= 54; i++)
{
ii = (21*%i) % 55;
mal(ii] = mk;
mk = mj - mk;
if (mk < MZ)
{

mk += MBIG;
}
mj = mal[ii];

}

// Randomize the items by ’'warming up’ the generator
for (k = 1; k <= 4; k++)
{
for (1 = 1; 1 <= 55; i++)
{
mal[i] -= ma[1 + (i+30) % 55];
if (mafli] < MZ)
{
ma[i] += MBIG;
}
} // end for i
} // end for k
inext = 0; // prep indices for first generated number
inextp = 31; // 31 is SPECIAL
*idum = 1;
} // end initialization

// Increment inext and inextp, with wrap from 56 to 1

if (++inext == 56)
{

inext = 1;
}
if (++inextp == 56)
{

inextp = 1;

// Generate new random number subtractively
mj = mal[inext] - ma[inextp];

// Check that it is in range
if (mj < MZ)

mj += MBIG;

// store it
ma[inext] = mj;

// output derived uniform deviate
return mj*FAC;

} // end Ran3

//
//
//

Num2Str

// Convert a given number to a string of 3 characters

//
//
//

e.g. 1 becomes "00L"

Num2Str

void Num2Str (char *str, long num)

{

char tmp_str[10];
ltoa (num, tmp_str, 10); // value, string radix

if (num < 10) // add 2 zeros
{
strcpy (str, "00");
}
else if (num < 100) // add 1 zero
{
strcpy(str, "0");
}
else
{
str[0] = "\0’";
}

strcat (str, tmp_str);

} // end Num2Str

//
//

{

GetWord

long GetWord(FILE *infile, char *word)

long length;
int ch;

length = 0;

ch = fgetc(infile);
ch = tolower (ch);

while ((!'feof (infile)) &&
((isalpha(ch)) || (ch == "'-") || (ch ==
)

word[length] = ch;
length++;

ch = fgetc(infile);
ch = tolower (ch);

// failsafe - do this better
if (length > 35)
{

break;
}
} // end while
word[length] = "\0’;

return length;

39)

)

// chr(39)

apostrophe

} // end GetWord

/) e
// MakeGraph

void MakeGraph (long num_lets, long max_deg, CGraph *graph)
{

FILE *infile;

char inname[30], num_str([10];

char tmp_word[30];

long words_in_file, length;

long num_verts;

Num2Str (num_str, num_lets);
strcpy (inname, "g_word");
strcat (inname, num_str);

strcat (inname, ".txt");

infile = fopen(inname, "r");

if (infile == NULL)

{
cout << "Error -- Unable to open file: [" << inname << "]" << endl;
return;

}

cout << "Reading from file: " << inname << endl;

cout << " Processing words of length = " << num_lets << endl;

words_in_file = 0;

while (!feof(infile))

{
length = GetWord(infile, tmp_word);
if (length == num_lets)
{

words_in_file++;

cout << " There are " << words_in_file << " words in the known configuration space."
<< endl;
cout << endl;

// reset to the beginning of the file - this is the dumb way
fclose (infile);

if (words_in_file > 10)

{
num_verts = words_in_file / FRACT_OF_WORDS; // use only 1/4 of the possible nodes
PRM(graph, inname, words_in_file, num_lets, num_verts, max_deq);

}

else

{
cout << "There are only 1 or 2 words in the dictionary." << endl;
cout << "Even a human should be able to process that." << endl;

cout << endl;

}

} // end MakeGraph

//
// PRM — Probablistic Roadmap General Method
//
// Create and save a graph for potentially solving a word ladder puzzle.
//
// inname is assumed to be valid and NOT open AND MUST contain
// [words_in_file] words.
[
void PRM(CGraph *graph, char *inname, long words_in_file,
long num_lets, long num_verts, long max_deq)

{

FILE *infile;

CNode node;

long i;
infile = fopen(inname, "r");

// Graph is Initialized to contain zero vertices
// When we are done it will contain num_verts
// howevr, not all may be connected

i=1;
while (i <= num_verts) // may alter i outside this func so do NOT use a for loop
{

GetRandomNode (infile, words_in_file, &node, graph);

graph—->AddNode (node) ;

it++;

// debug check:
cout << "Random node = " << node.m_word << "... num verts so far is " << i << endl;

}

//

// For each node v (valid word), whose distance is one from node

// add edge from v to node - also add v into graph if not already in graph
// (and increment 1 so our vertex count is correct)

CheckNhbrs (infile, num_lets, graph, &node, &i);

} // end while i

fclose (infile);

// end PRM

// GetRandomNode
// infile is assumed opened already

void GetRandomNode (FILE *infile, long max_index, CNode *node, CGraph *graph)

{

static long seed = -3; // change this to some other negative num for diff results
long rand_index;

long index;

char word[30], user_in[10];

bool valid;

long num_tries;

rand_index = RandomLong (max_index-1, &seed);

num_tries = 1;
valid = false;
while (!valid)
{
// technically if we use binary read and fseek we can do this more efficiently
rewind (infile);
for (index=1; index <= rand_index; index++)
{
GetWord (infile, word);
}

// Set the node
strcpy (node->m_word, word);
node->m_id = rand_index; // id’s are not really used (yet)

// check if word is valid (i.e. not already in the graph)
if (graph->FindNode (*node) == false)
{
valid = true;
}
else // pick another random number
{
rand_index = RandomLong (max_index-1, &seed);
num_tries++;

if (num_tries % 5000 == 0)
{
cout << "Stuck in GetRandomNode, num_tries = " << num_tries << endl;

cout << "Do you wish to continue trying? " << endl;

gets (user_in);

if ((user_in[0] == 'n’) || (user_in[0] == ’'N’))
{
cout << " Program terminated. " << endl;
fclose (infile);
exit (1);

}

} // end asking user ifwish to continue
} // end else

} // end while not valis
} // end GetRandomNode

// CheckNhbrs

// For each node v (valid word), whose distance is one from node

// add edge from v to node - also add v into graph if not already in graph
// (and increment 1 so our vertex count is correct)

// infile is assumed opened and its pointer will be changed

void CheckNhbrs (FILE *infile, long num_lets,
CGraph *graph, CNode *node, long *num_verts)
{
CNode nhbr_node;
long let_index;
char ch;

// loop through each character of node’s word
for (let_index = 0; let_index < num_lets; let_index++)

{

strcpy (nhbr_node.m_word, node->m_word);

// and change the letter

for (ch = ’"a’; ch <= "z’; ch++)
{ nhbr_node.m_word[let_index] = ch;
if (node->m_word[let_index] != ch)
{ // 1f nhbr_word is a ’known’ word —-- shows up in infile

nhbr_node.m_id = FindWord(infile, nhbr_node.m_word);
if (nhbr_node.m_id >= 0)
{

if (graph->FindNode (nhbr_node) == false)
{
graph->AddNode (nhbr_node) ; // notice could recurse this function on
this node’s nhbrs too
*num_verts = *num_verts + 1;

}
graph->AddEdge (*node, nhbr_node);
} // end word was valid

}
} // end for ch
} // end for let_index

} // end CheckNhbrs

//
// FindWord

//

// Returns the word number of word, if it is found in infile

// else returns negative 1

//
e
long FindWord(FILE *infile, char *word)

{

long ret_val, index;
char tmp_word[30];

ret_val = -1;
rewind (infile);

tmp_word[0] = "\0’; // as a precaution;
index = 0;
while ((!'feof(infile)) && (ret_val == -1))

{
GetWord(infile, tmp_word);

if (strcmp (word, tmp_word) == 0)
{
ret_val = index;
}
index++;

} // end while
return ret_val;

} // end FindWord

// end PlanPath.cpp

	Brent M. Dingle
	Spring 2002
	INTRODUCTION
	THE PROBLEM
	SETUP FOR A PRM
	CREATING THE MAIN MAP
	LOCAL PLANNING
	CONCLUSION
	BIBLIOGRAPHY
	APPENDIX A Œ Full Source Code

