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Abstract: 
Determinants are not the easiest or quickest calculation in any numerical software 
package. Symbolic determinants only increase the difficultly. For the most part we have 
efficient algorithms for calculating determinants of numerical matrices. We have good 
algorithms for calculating the determinants of matrices with univariate elements. 
However there are few (simple) algorithms for calculating the determinants of matrices 
involving multivariate polynomials. In this paper we will present an easy to implement, 
accurate and robust method for calculating the determinant of a matrix with multivariate 
polynomials as entries. It is not the fastest method, but it will always work. This method 
will rely on the existence of an efficient algorithm to calculate numerical determinants 
and an efficient algorithm to interpolate polynomials of large degree. Both of which are 
known to exist and are available from a variety of sources. 
 
 
 



1   Introduction 
Within this paper will be found an easy, accurate and robust method for calculating the 
determinant of a matrix which contains multivariate polynomial entries. The particular 
motivation for this paper was finding a way to calculate the resultants necessary for 
transforming parametric surface representations into implicit representations. However 
that is only one potential use for the algorithm we will present. The need for such an 
algorithm extends across various engineering and scientific fields [Gasc2000] and is 
lacking in general theory [Olve2004]. Most papers have focused on divided difference 
and subdivision approaches and usually have a rather heavy theoretical presentation of 
their methods [Debo1990], [Gasc1999], [Gusk1998], [Saue1995]. Some others have been 
concerned with specific circumstances [Marc2001], [Marc2002]. While we would hope 
this paper assists in the development of a general theory, we are much more concerned 
with a direct and immediate application. We will also be deviating from the majority of 
the papers in methodology and presentation for our method is based on an algebraic trick 
proposed in [Moen1976], and rather than focus on the theoretical discussion of why this 
trick works we will be more concerned with presenting how it works. This presentation 
will be geared towards a single application, that of finding the determinant of a 
multivariate matrix. 
 
The layout of this paper is brief. There is no theoretical discussion on this method. In 
section 2 we present the requirements for using the method along with a description of 
the method itself. In section 3 we present a couple examples demonstrating the method. 
Section 4 offers a short summary and conclusion. 
 
 
2   The Method 
2.1   The Requirements 
To use the method we are about to describe several assumptions are made: 

1. The symbolic matrix under consideration is nonsingular. 
2. A fast method to calculate the determinant of a numerical matrix exists. 
3. A fast method to perform a univariate interpolation on a large set of data 

points exists. 
4. The number of variables in the determinant is known. 
5. The maximum degree of each variable in the determinant can be found. 

 
 
2.2   The First Step 
Since we have assumed the matrix is nonsingular and the number of variables found in 
the determinant is known, the first piece of information to calculate is the maximum 
degree of each variable in the determinant. A general way to do this can be found in 
[Ding2004] and for cases involving parametric surfaces [Marc2002] may be helpful. 
Once these degree values are determined we can move on to the next step.  
 
 



But first, some notation, assume there are n variables named xi, for i = 1 to n. Denote the 
maximum degree of each xi by di. With this notation in mind, we move to the key step. 
 
 
2.3   The Trick 
The beauty of this method is in a “substitution” trick. As we are not dealing with an 
equality we need not concern ourselves with the actual relationship between the variables 
of the determinant. What we do care about is finding the polynomial that represents the 
determinant. So in considering this method it may be best to draw an analogy found in 
calculus. Specifically when integrating complicated functions it is often advantageous to 
perform a “U-substitution” to allow us to apply “simpler” rules. The actual ‘U’ has little 
meaning, it exists solely as a placeholder with nice properties and in the end it vanishes. 
 
 
2.3.1   The Kroenecker Trick 
In the paper [Moen1976] a method for multiplying multivariate polynomials is presented 
that is referred to as the “Kroenecker Trick Algorithm.” This trick effectively reduces the 
problem of multivariate polynomial multiplication into a problem of univariate 
polynomial multiplication. It is summarized as follows: 
 
Substitution and Multiplication Step 
   Given two (multivariate) polynomials: 

1. Let n be the number of unique variable names. 
2. Find the highest degree di of each variable xi across both polynomials. 
3. For i = 1 to n – 1 

a. Substitute 1 1
1( ) id

ix + +
+ , that is xi raised to the (di+1 + 1), in for xi. 

Note: this results in each xi equaling xn raised to some power, denote 
this power pi. And by definition let p0 = 0. 

4. There are now two univariate polynomials, multiply them using a fast 
univariate multiplication routine. 

 
Recovery Step 
   Recover the multivariate solution by performing the following: 

1. For each xi, i = 1 to n – 1. 
a. For k = 0 to di  

i. Locate the coefficient of the xi
k by isolating the terms of degree 

less than (k+1)*pi. Divide these terms by and multiply 
by x

*( ) ik p
nx

i
k. 

 
While this trick may seem complicated it is quite simple, as the examples in section 3 
will illustrate. 
 
 
 
 
 



2.3.2   Reapplying the Kroenecker Trick 
For our case of calculating a determinant we do not have a given polynomial. However 
we do have the maximum degrees of each variable that will be in the polynomial we 
desire. Applying the substitutions to the matrix entries as described above and assuming 
the monomial 1 2

1 2* *...* ndd d
nx x x  exists in the determinant then the univariate form of our 

polynomial would have a maximum degree of  
 

D =  
1 1

* ( 1)
n n

i k
i k i

d d
= = +

⎛ ⎞+⎜ ⎟
⎝ ⎠

∑ ∏
Equation 1 

 
While this bound is often (much) larger than needed it is the absolute worst case and thus 
will apply to all cases.  
 
However there are some easy ways to reduce it. The first is to consider that we have 
performed a substitution that makes our matrix under consideration to be univariate. To 
determine the maximum degree of its determinant we may apply the univariate case of 
[Ding2004] or apply the method described in [Henr1999] or apply any other appropriate 
method. So for specific applications it would be recommended to perform some analysis 
on the particular matrix being studied with an effort towards reducing this bound. It 
should be understood that much of the research already done has in fact been geared 
toward discovering such limits and there are a papers for a variety of such cases 
[Marc2001], [Marc2002]. Regardless once this D has been determined we know we will 
need D + 1 interpolation points to evaluate it. 
 
 
2.4   Finishing It 
As we have now determined how many points we need, and we have performed the 
substitutions as described above on the matrix entries, we may now use our fast method 
for calculating the determinant of numerical matrices. Specifically we must select D + 1 
values to put into the matrix for xn. (Notice we may need to be careful in the range of 
such values as the limitations of built-in numeric types will likely be a factor.) Having 
performed these calculations for each entry in the matrix we then calculate the D + 1 
numeric values of the determinant. This gives us D + 1 interpolation points. From here 
we apply our favorite univariate interpolation routine and we will arrive at a univariate 
polynomial that represents our determinant. Of course we “know” the determinant should 
be a multivariate polynomial. To recover this polynomial we simply perform the recovery 
step as described above and we are done. 
 
 
 
 
 
 



3   Some Examples 
In this section we will present a couple examples illustrating how to apply our method. 
The exact details of finding the degree of each variable [Ding2004], [Henr1999], 
[Marc2002], calculating a numeric determinant and performing an interpolation are 
omitted for brevity and because there are plenty of descriptive sources for such tasks 
[Press2002]. 
 
 
3.1   A Simple Example 

Let A = 

2

2

1 0 3
1
0 1 2

x y
x xy

x y

⎡ ⎤+
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

. 

 
Whose determinant can be found by hand to be:  –x4y – x3y +3x2y2 + x2y + xy + 3y2. 
So we “know” the maximum degree of x is 4 and the maximum degree of y is 2. While 
we could apply the method described in [Ding2004] to obtain these bounds, for brevity 
we will simply use the 4 and 2 and pretend we derived them. Likewise we will pretend 
the monomial x4y2 exists in the determinant (though we “know” it does not). 
 

So we let x = y3 and substitute into A to obtain A’ = 

3 2

3 4

6

1 0 3
1
0 1 2

y y
y y

y y

⎡ ⎤+
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

. 

 
 
We will now need to calculate the numerical determinant several times. Specifically, 
applying Equation 1: 
 

D =  = 4 + 4*(2+1) = 4 + 12 = 16 
1 1

* ( 1)
n n

i k
i k i

d d
= = +

⎛ +⎜
⎝ ⎠

∑ ∏ ⎞
⎟

 
we see the maximum degree of the determinant would be 16, so we need at most 17 
points. We could also apply the univariate method of [Ding2004] to obtain D = 13, thus 
requiring only 14 points. We mention this only to illustrate the ease with which the 
method could be improved and will continue using the 17. 
 
Picking 17 values, perhaps using y = { -8, -7, -6, …, 0, …, 7, 8 } we obtain 17 values for 
the determinant. This gives us 17 points to use in a “fast” interpolation method and we 
discover det(A’) =  –y13 – y10 + 3y8 + y7 + y4 + 3y2. 
 
We now recover the multivariate result, by “dividing out powers of y.” To obtain the 
coefficients of x0, we would first need to locate all the terms (monomials) with degree 
less than 3 ={ 3y2 }. We then divide each of these term(s) by y0 and multiply by x0. 
Which gives us, 3y2. 



 
Next, to find the coefficients of x, we locate all the terms with degree less than 6 = { y4 }. 
We then divide each of these terms(s) by y3 and multiply by x. Which gives us xy. 
 
To obtain the coefficients of x2, we locate all the terms with degree < 9 = { 3y8, y7 } 
We then divide each of these terms by y6 and multiply by x2. Which gives us 3x2y2, x2y. 
 
To obtain the coefficients of x3, we now locate all the terms with degree < 12 = { –y10 }. 
Dividing these term(s) by y9 and multiplying by x3 we obtain –x3y. 
 
Finally, to find the coefficients of x4, we locate all the terms with degree < 15 = { –y13 }. 
Dividing these term(s) by y12 and multiplying by x4 we obtain –x4y. 
 
And we now have our multivariate determinant:  

det(A) = 3y2 + xy + 3x2y2 + x2y – x3y – x4y. 
 
 
3.2   A More Complex Example 
 

Let A =  

2

3

2 2

1 3
7

1 2

x x z y
x y xy

y y x x y

⎡ ⎤+
⎢ ⎥+⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

 
Notice the determinant of this matrix can be calculated by hand to be: 

x6 + x5 + 2x4y – 7x4z  
+ x3y3z – 3x3y3 + x3y2z – 3x3y2 + x3yz – x3y  

– 14x2yz  
+ 2xy2 + 21xy  

– 3y4 – 3y3 – y2

 
So we “know” the highest degree of x is 6, the highest degree of y is 4 and the highest 
degree of z is 1. We will pretend we derived these degrees in some fashion [Ding2004]. 
We will also pretend the monomial x6y3z could exist in the determinant. Because of this 
we make the following substitutions: 

y = z2  
x = y5 = z10  

 
Thus our univariate matrix is: 
 

A’ = 

10 21 2

30 2 12

4 2 10 20 2

1 3
7

1 2

z z z
z z z

z z z z z

⎡ ⎤+
⎢ ⎥+⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

 

 



By equation 1, D = 6*(4+1)*(1+1) + 4*(1+1) + 1 = 69 (again we could apply the 
univariate method of [Ding2004] to obtain D = 60, but will again continue using the 69). 
Thus the maximum degree of the determinant is 69. Because of this we will need to find 
70 values of z at which to evaluate the det(A’). Notice our selection of values may be 
limited by the range of the data types of whatever programming language with which we 
might choose to implement this. Overcoming that limitation may be difficult in some 
situations. However, assuming we successfully obtain 70 determinant values we will 
have 70 points on which to perform an interpolation. This interpolation would yield the 
following result: 

z60 + z50  
+ 2z42 – 7z41  

+ z37 – 3z36 + z35 – 3z34 + z33 – z32  
– 14z23  

+ 2z14 + 21z12  
– 3z8 – 3z6 – z4    

 
Taking all the terms where the degree is < 10 = { –3z8,–3z6, –z4 }, then dividing each by 
z0 and multiplying by x0, we get –3z8 – 3z6 – z4. 
 
Taking all the terms where the degree is < 20 = { 2z14, 21z12 }, then dividing each by z10  
and multiplying by x, we get (2z4 + 21z2) * x. 
 
Taking all the terms with degree < 30 = { –14z23 }, then dividing each by z20 and 
multiplying by x2, we arrive at (–14z3) * x2. 
 
Taking all the terms with degree < 40 = { z37, –3z36, z35, –3z34, z33, –z32 }, then dividing 
each by z30 and multiplying by x3, we arrive at (z7 – 3z6 + z5 – 3z4 + z3 –z2) * x3. 
 
Continuing we take all the terms where the degree is < 50 = { 2z42, –7z41 }, then divide by 
z40 and multiply by x4, we would end with (2z2 – 7z)*x4. 
 
In a like manner we also obtain (1)*x5 and (1)*x6. 
 
We now need to recover the y coefficients. So for each of the coefficients of the various 
powers of x (i.e. x0, x1, x2, x3, x4) we would need to perform the following: 
 
For the coefficient of x0 which was determined above to be –3z8 – 3z6 – z4.  

We first find the coefficient of y0 by locating all the terms where z has a degree 
less than 2. In this case there are none.  
 
Next we find the coefficient of y by locating the terms with degree less than 4 
which again, in this case, there are none. 
 
Then we find the coefficient of y2 by isolating the terms with degree less than 6 
which gives us { –z4  }. We then divide by z4 and multiply by y2 to get –y2. 
 



We next find the coefficient of y3 by locating the terms with degree less than 8 
which yields { –3z6  }. We then divide by z6 and multiply by y3 to get –3y3. 
 
Finally we find the coefficient of y4 by locating the terms with degree less than 10 
which yields { –3z8  }. We then divide by z8 and multiply by y4 to get –3y4. 

 
For the coefficient of x which was derived above to be 2z4 + 21z2.  

We find the coefficient of y0 by locating all the terms where z has a degree less 
than 2. In this case there are none.  
 
Next we find the coefficient of y by locating the terms with degree less than 4 
which gives us { 21z2 }. We then divide by z2 and multiply by y to get 21xy. 
 
Then we find the coefficient of y2 by isolating the terms with degree less than 6 
which gives us { 2z4  }. We then divide by z4 and multiply by y2 to get 2xy2. 
 
We next find the coefficient of y3 by locating the terms with degree less than 8 
Which in this case, there are none. 
 
And finally we find the coefficient of y4 by locating the terms with degree less 
than 10 which, again in this case, are none. 

 
And we would do likewise for the coefficients of x2, x3, x4, x5 and x6 to eventually arrive 
at the determinant of A to be: 

det(A) = x6 + x5 + 2x4y – 7x4z + x3y3z – 3x3y3 + x3y2z – 3x3y2 + x3yz – x3y  
– 14x2yz + 2xy2 + 21xy – 3y4 – 3y3 – y2

 
 
4   Summary 
So we have now presented an easy to implement, robust method for calculating the 
determinant of a multivariate matrix using already existing univariate methods. We have 
also shown several examples demonstrating how this method works. While this method 
may not always be the most efficient, it will always work.  
 
To improve the speed of this method we would strongly recommend using the univariate 
method described in [Ding2004] or the method described in [Henr1999] to evaluate the 
maximum bound D. With that said we readily acknowledge that the more information 
that can be predetermined about the determinant, such as which monomials exist in the 
determinant and the degree of each variable in each such monomial, would serve to 
possibly reduce the number of interpolation points necessary. This would, in turn, 
improve the speed of this method. However, it is not necessary for the method to work. 
The upper bound, D, as described is the worst case bound.  
 
While there are other improvements that could be made, the above method is an easy to 
implement, robust method for calculating the determinant of multivariate matrices. It has 
the advantages of requiring very little knowledge of advanced algebra and requiring only 



an understanding of the (already well developed) univariate methods. It also eliminates 
the need for a complex multivariate computer algebra system, which is useful if the 
desire is to solve a particular problem in a short amount of time. Further this method has 
been implemented and does perform faster, in significantly large cases, than calculating 
the determinant through direct polynomial multiplications, additions and subtractions. 
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