Affine and Perspective Warping

(Geometric Transforms)

Image Processing

Lecture Objectives

e Previously

— Image Wa rping (Geometric Transforms)

 Today

— Projective Warps
e Affine Warping (review)
* Perspective Warping

Outline

* Projective Warps
— Affine Review
— Perspective Warping
— Concluding Remarks

Affine Map

A geometric transformation that maps
points and parallel lines
to points and parallel lines

General form of an affine map:

r | | ajqu—+aqav + a3
1Y (1911 + 99V + (193

X(u,v) = ajqu + a1ov + a3

}:['U* V) = a9 + a9 + a93

a; are coefficient constants

Affine Maps: Matrix Form

i

11U + A192V + 13
191U + A99V + 193

X(u,v) = ayqu + a12v + ays.

~

_ Y (u,v) = ag1u + agv + ass)

in matrix form looks like:

(111
(191

(119
(199

(113
(199

u

U

Homogeneous Coordinate System

e Given homogeneous coordinates (u, v, 1)
— Find Cartesian coordinates (x, y)

£ [11 (192 13 (I
Y — | a21 a2 a3 v
1 0 U 1]

Explicitly, x then would be calculated as:

T =0aqi1u + a120 +— aq13 = [111 12 a3] v

AGAIN: 1
Conversion from Homogeneous coordinates to Cartesian is NOT unique
coeffs a; will describe how we want to warp an image,
Example: a,;is a translation distance for x

Points to Remember

e Homogeneous Coordinates

— allow affine transformations
to be easily represented
by matrix multiplications

o Affine Maps

— always have an inverse

— can be represented in matrix form
(via homogeneous coords)

L "

Scale: an affine map transform

e scale(x,y) =(a,u, a,Vv)

a1 0 07 ru aj1u
[0 ay 0] [V] = lazzv
0 0 11t1 1

Ha'_'_'hl B

AT e . aake e e il

Translate: an affine map transform

e translate (x,y)=(u+ay;, v+a,;)

1 0 aq3 u+aqs
[0 1 a23] [] v+ a23
(313, a33)

(0, 0)

. T Ty T

Shear: an affine map transform

e shear(x,y)=(u+ap,v, a,;u+v)
U+ aqpv
a,{u +v

1 ap, O]ru
la21 1 O] [U] —
0 0 11t1 1

—— a12V '-'— Iy
v —
m——-

e FaTFF Y v

Rotate: an affine map transform

e rotate (x,y)=(u cos@ —v sin@, vsin 0)

cos@ —sin@ O0]ru U cosf@ —v siné
sin @ cos6 O [v]= u sin@ + vcoséb

0 0 1111 1

— - 0
Y

. e .

Composing Affine Warps

. .] Y
e R is arotation ‘ ‘
R U — i
e Sisascale 1] L1
» Tis a translation R
S v’ — '’
Fir.t do a rotation, followed by a scale, then a translation 1 1
Denote this as: - - - - = -
J i _) ~
g . _ N u” u"’
T() U? 1)) fl T ! _ wZ
S)) 1 1
By associative property can also denote it as:
[| R
(TS)R) | v | = | "

Composing Affine Warps

M =TSR,

1" Y ik
MI!I v | =1 7"
| 1

e All translations, scales, and rotations can be done using one matri

* Yields ONE SIMPLE representation

— Important: order of operations when creating the matrix does matter, be careful
— i.e. operations are NOT commutative

(0,1)

I!’Hllll!lllllllﬂl!l!""'

Pe——_—_————

Example
(1,1)
(3/4,3/4)
1/2 Scale (1/2,1/2) translate
— |
S T
(1/4,1/4)
(1:01 (0,0)
" 1/2 0 0] T 10 1/4 7
S=| 0 12 o|.T=|0 1 1/4
0 0 1| 00 1 |
"1 00 1/4771/2 0 0°
TS=|0 1 1/4 0 1/2 0
o0 1 JL o o 1.
i 9 3§
M=18= 0 1/2 1/4
0 0 1 |

- i BN sk o . A A

'S

e Whatis ST ?

ST =

T and S Commutative ?

I
0
0

0

I
0

M=TS5 =

0
0

1/2

0
1/2
0

0
0
1

I

1/4 7
1/4
1

1 0 1/4
0 1 1/4

0

[1/2

0
0

0

1

" 1/2

0
0
0
1/2
0

- |

1/4]
1/4

I

1/2

0
0

0

) -
1/2 0
0

1

0
1/2
0

1/8
1/8‘
1

NOT commutative !

-

A
Bt
F

Affine Summary: ROW vector form

Affine Transform Example Transformation Matrix
Translation _1 0 0] t. specifies the displacement along the x axis
0 1 0 t, specifies the displacement along the y axis.
t, t, 1 .
|ty T Each matrix
Scale [S L0 0] here is the s, specifies the scale factor along the x axis
0 s, 0 tra nspose s, specifies the scale factor along the y axis.
oo of what was
Shear [shy 0 just prese nted | sh. specifies the shear factor along the x axis
shy, 1 0 sh, specifies the shear factor along the y axis.
0 0 1
Rotation /A\ _cos[q) sinf(qg) O q specifies the angle of rotation.
4 2 . '
\v/ -sinfq) cos(q) O
0 0 1

Table from: http://www.mathworks.com/help/images/performing-general-2-d-spatial-transformations.html

IMPORTANT:
Know what your abstraction is. u
We have been using column vector: |y

1

Others, as above,
may expect row vector: [u v 1]

Outline

* Projective Warps
— Affine Review

— Perspective Warping
e NOT affine
e Subset of Projective Mapping

— Concluding remarks

Perspective Warps: Non-Affine Transform

e Perspective warps are NOT affine
— Not all parallel lines stay parallel
— But lines do stay lines
— And provides a 3D feeling

vanishing point

/ \\ foreshortening

—— / f’ l't \- horizontal lines
/] L\

stay parallel

bottom
looks longer
-- gives illusion of depth

Aside: Perspective Warping will be seen to be a ‘subset’ of Projective Transforms
--- just as scale, translate, rotate, shear, are ‘subsets’ of general affine

Perspective Transform: Step 1

e Matrix Multiply
— Third coordinate, w, of result is no longer 1

1 0 O1ru [u 1
[0 1 0] [v] = %
a1 as, 1111 [[aglu + a3, v + 1J] =W

Perspective Transform: Part 2

e Restore points to homogeneous coordinates
—withw=1
— divide each vector by its own w coordinate

u/w
-

NOTE: w is different for each point

Example

(0,1) (1,1)
-
forward map

(0,0) (1,0)
I 0 07
P=|10 1 0
I 0 1 |
P

(0,1)

0.25 1
0.25+1°0.25+1

0.5 1
054+1°05+4+1

(0.5,0.5)

vanishing point
at infinity

v

Perspective Warp < Projective Map

* Perspective Warping
is a ‘type’ of Projective Transform

— just as
scale, translate, rotate, shear,
are ‘types’ of general affine transforms

Projective Map: General Equation

a31u + a32U + a33 N N
[A11U T A1V T A13]

a,iu + a,,V + ar3 lall ain a13] [u] a31u + agzv + a33

asiu + as,V + aszs — aZlu + azzv + a23

asz1 a3z dAsz3

1

Projective Back to Perspective

a31u + a32U + a33

a,iu + a,,v + ar3 aii
asiu + as,V + aszs az1
asq

[A11U + a,;,v + a13_

a31u + a32v + a33
aiu + a,,v + ajs

1

For the perspective case (just described) most of the coefficients becomes 0 or 1

u
1 0 07 ru asiu + a3,V +1
[0 1 0] [v] = v
az; asz; 1111 aziu +az,v+1
1

Projective Back to Perspective

And we separated the process into TWO steps

u

a31u + a32U + 1
= v

1 0 Ojru u
R
az; azz 1111 azu +azv+1 aziu+azv+1
: 1

step 1 step 2

Summary: Affine and Perspective Warps

 Warps are cool

e Affine warps are awesome

— Can combine warps into one matrix
— BUT order matters

e Perspective warps rock
— Are NOT affine
— Use same matrix idea as affine
— Are a type of projective map

Outline

* Projective Warps
— Affine Review
— Perspective Warping
— Concluding Remarks

* Projective Warps are

Projective Warps

Affine, Perspective or Composite of the two
e Affine is Perspective withw =1

1

aziu +az,v+1

|
w

v

asiu + a3,V + 1

Uu

u/w
v/w
1

u

asiu + a3,V + 1
(%

aziu +az,v+1
1

Affine cases:
w=1-2>a3landa32=0

Inverse Map

The general formula for an inverse of a matrix mapping, M is

L AT
Mt ="""-
M|

where |[M| is the determinant of the matrix M
and A(M) is the adjoint of M

Inverse map of Projective Warp

(11 d12 d13
M = (191 (199 U193
(131 (139 (133

(M| = ajrazazs +ajpaz3azy +a13azzaz) — a13a22a31 — 112021033 — 11032023

(99033 — 923039 (A13039 — A12033 (A192093 — A130199
A(Jf} = (lagdg1 — do1dd33 d11d33 — d13031 d13d921 — A110U923
(i210a32 — (22431 12031 — d11d32 A11022 — (12021

L AM)

M-1=2
M|

Summary of Warps and Process

e As an exercise it may be useful to closely
follow the next few slides

— Walk through some examples
by hand and by code

| Image Warp

4

Scale

—_—

| Translation
Subtypes | ———
f . Rotation
| TR
Il I'-, Shear
| T ayy e g u
| S 1 y | = | az axp azs vt (9.4)
tep1l - 1 0 0 1 1
Affine Transformation | 1
I" '| [| Multiply the input coordinates with the Matrix
| | ' "
| | Process - B ufw
| & | Step2 v | =| v/w
| B | (not necessary - o w 1
Projective Transformations °) | for Affine) . .
— | , Divide result by its own w (w=1)
{ Types } | (just to unify projective transformation process)
‘ Subtypes - Perspective
| _,."' |' 1 0 0 u] {7
| | Step 1 0 1 0 v | = v
A7 epl - . ., ’ 200
.‘..‘. | | I. | agy azs 1 1 i agyu 4+ agov + 1
l'. Perspective Transformation | |' | Multiply the input coordinates with the Matrix
. Process -/ _
- s a— | 1w wjw
& WO ' v | = | v/w
0 A 1
S e | Step2 - w
\>teP w 1
. o »* | -
3 ' | Divide result by its own w
' General Warps o
| Bilinear Warps
: Folds
Forwatd Map.~ Problems -,
II : -' I'\ HDIeS
| " '! -
| -
| | H & Mgy dga gy
I | H M= ay ap axn
| g f My a3z fa
\ | H ;
I".,'i‘ ' M| = 611022033 + Q1223031 + Q13032021 — 613022031 — G12021 033 — @11 A326025
‘ Methods }-{ 35
T | Inverse Map A = ['i“?i‘.‘" sy — e i — Zii’,'i”i"]
‘—| 1033 — 022031 G10403) — @103 01102 — 01202
| L, AM)
| M=

Figure 10.2: 3 = 3 Matrix Inverse

\ Inverse Projective

Image from Book/Slides: The Digital Image
by Donald House, Texas A&M University

Step 1: Build Transformation Matrix M

A composite transformation matrix is easily
constructed from a series of more simple
transformations

— Initialize M to the identity matrix 100
M=10 1 O

0 0 1

— Then for each simpler transform, T, pre-multiply the
matrix M by T
e Replacing M by the product TM
M €& TM

Step 2: (Think) Forward Map the corners

e

- I -, —
— = T T

.-"--------F H .
/ - \ I .
u, yd 1 2
X3

ul / X
P]
Xo
u
3 9
v . \ _-_-#}_;,_.f Y
— < ™

-

u X
X; U; a1 QA2 QA13][y; a11U; + a1,v; + aq3
| =M|v;| =|Az1 ayy aszz||v; Xi =
i t ‘ Az1U; + A3V; + A3z
1 1 aszi1 azz; azzjl1
Vi = Az1U; + AzV; + Ap3
ASIDE: Yoagu; +asav; + ass

This is a good debug check to make sure matrix is correct
See if the corners via forward map go where you expect

Step 3: Find the Inverse Transform

(11 d12 d13
M = (191 (199 U193
(131 (139 (133

|1l.|'f| = ﬂllﬂggﬂgg—i—ﬂ12”23(131 —}—ﬂlgﬂggﬂgl — (13092031 — 120921033 — 110320923

(19933 — (9339 (113039 — (192033 (112093 — (113199
A(M) = | aszaz; — as1a33 11033 — 13031 113021 — 4110123
(i210a32 — (22431 12031 — d11d32 A11022 — (12021

L AM)

M-1=2
M|

Xi Ui Xi 2%}
yvil=M|vi [M~ |y;| = |v;
1 1 1 1

Step 4: Apply the Inverse Transform

Loop through the output image pixel by pixel
— |dentify the input image pixel each is mapped to

e and assign each the corresponding color
for(y = 0; y < out_height; y++)

for(x = 0; x < out_width: x++)
Out [x] [y] = In[round(U(x,y))] [round|(V(x,y)D];

134-77] _U(x. y.)- xi
|RAVA)
/,.ef 13|13 | 13 _1

1112713 vo. vol vt 12| 12| 1213 | 13 V(xi)yi) p— M yl
21| 22 | 23 h 21 | 21| 22| 22| 22| 23 | 24

31| 32| 33 31| 31| 22| 22| 22|23 | 2 ~ 1 1
31 "-s.g_._:i 33 3
‘ﬁg_\sj

In out

Questions?
Beyond D2L

— Examples and information
can be found online at:

e http://docdingle.com/teaching/cs.html

e Continue to more stuff as needed

Extra Reference Stuff Follows

Credits

e Much of the content derived/based on slides for use with the book:
— Digital Image Processing, Gonzalez and Woods

 Some layout and presentation style derived/based on presentations by
— Donald House, Texas A&M University, 1999
— Bernd Girod, Stanford University, 2007
— Shreekanth Mandayam, Rowan University, 2009
— lgor Aizenberg, TAMUT, 2013
— Xin Li, WVU, 2014
— George Wolberg, City College of New York, 2015
— Yao Wang and Zhu Liu, NYU-Poly, 2015
— Sinisa Todorovic, Oregon State, 2015

	Affine and Perspective Warping �(Geometric Transforms)
	Lecture Objectives
	Outline
	Affine Map
	Affine Maps: Matrix Form
	Homogeneous Coordinate System
	Points to Remember
	Scale: an affine map transform
	Translate: an affine map transform
	Shear: an affine map transform
	Rotate: an affine map transform
	Composing Affine Warps
	Composing Affine Warps
	Example
	T and S Commutative ?
	Affine Summary: ROW vector form
	Outline
	Perspective Warps: Non-Affine Transform
	Perspective Transform: Step 1
	Perspective Transform: Part 2
	Example
	Perspective Warp  Projective Map
	Projective Map: General Equation
	Projective Back to Perspective
	Projective Back to Perspective
	Summary: Affine and Perspective Warps
	Outline
	Projective Warps
	Inverse Map
	Inverse map of Projective Warp
	Summary of Warps and Process
	Slide Number 32
	Step 1: Build Transformation Matrix M
	Step 2: (Think) Forward Map the corners
	Step 3: Find the Inverse Transform
	Step 4: Apply the Inverse Transform
	Questions?
	Extra Reference Stuff Follows
	Credits

